Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
2.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.11.22.517500

RESUMEN

There is an urgent need for efficient and safe vaccines against the monkeypox virus (MPXV) in response to the rapidly spreading monkeypox epidemic. In the age of COVID-19, mRNA vaccines have been highly successful and emerged as platforms enabling rapid development and large-scale preparation. Here, we have developed two MPXV quadrivalent mRNA vaccines, named mRNA-A-LNP and mRNA-B-LNP, based on two IMVs (A29L and M1R) and two EEVs (A35R and B6R). By administering mRNA-A-LNP and mRNA-B-LNP intramuscularly twice, mice have induced MPXV-specific IgG antibodies and potent Vaccinia virus (VACV)-specific neutralizing antibodies. Additionally, it elicited durable MPXV-specific killer memory T-cell immunity as well as memory B-cell immunity in mice. Furthermore, the passive transfer of sera from mRNA-A-LNP and mRNA-B-LNP-immunized mice protected nude mice against the VACV challenge. In addition, two doses of mRNA-A-LNP and mRNA-B-LNP were also protective against the VACV challenge in mice. Overall, our results demonstrated that mRNA-A-LNP and mRNA-B-LNP appear to be safe and effective vaccine candidates against monkeypox epidemics, as well as against outbreaks caused by other orthopoxviruses, including the smallpox virus.


Asunto(s)
COVID-19
3.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.12.07.414292

RESUMEN

Viral zoonoses are a serious threat to public health and global security, as reflected by the current scenario of the growing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases. However, as pathogenic viruses are highly diverse, identification of their host ranges remains a major challenge. Here, we present a combined computational and experimental framework, called REceptor ortholog-based POtential virus hoST prediction (REPOST), for the prediction of potential virus hosts. REPOST first selects orthologs from a diverse species by identity and phylogenetic analyses. Secondly, these orthologs is classified preliminarily as permissive or non-permissive type by infection experiments. Then, key residues are identified by comparing permissive and non-permissive orthologs. Finally, potential virus hosts are predicted by a key residue-specific weighted module. We performed REPOST on SARS-CoV-2 by studying angiotensin-converting enzyme 2 orthologs from 287 vertebrate animals. REPOST efficiently narrowed the range of potential virus host species (with 95.74% accuracy).


Asunto(s)
Síndrome Respiratorio Agudo Grave
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA